
1

TTSApp ReadMe
Benjamin ‘Benilda’ Key: Ben.Key@YekNeb.com

mailto:Ben.Key@YekNeb.com

2

Contents
Introduction 3

Features 4

Building 5

Motivation 7

Command Line Options 8

Usage 10

Credits 15

License 16

3

Introduction
TTSApp is a simple open source Text to Speech application for
reading text files and the clipboard using SAPI5 or the Microsoft
Speech Platform. It is a dialog box application for Microsoft
Windows that is written using the Microsoft Foundation
Class (MFC) Library. It runs on Microsoft Windows. I have
only tested it on Microsoft Windows 10, but it should work on
Windows 7 and up.
The application can be built to used either Microsoft Speech
API 5.3 or the Microsoft Speech Platform for Text to
Speech services.
Table of Contents

https://svn.sullivanandkey.com/SnKOpen/cpp/TTSApp/trunk/
https://msdn.microsoft.com/en-us/library/d06h2x6e%28v=vs.140%29.aspx
https://msdn.microsoft.com/en-us/library/d06h2x6e%28v=vs.140%29.aspx
https://msdn.microsoft.com/en-us/library/ms723627(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms723627(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/office/hh361572(v=office.14).aspx

4

Features
• Prosody manipulation: voice, rate, and volume.
• Speak text.
• Pause and Stop speech.
• Speak a text file.
• Save to MP3 or WAV file.
• Speak clipboard text (Control+Shift+Windows+C)
• Highlights each word as it is spoken.
• Customize font.
• Supports command line arguments for setting the voice and

speaking a text file to an MP3 or WAV file.
• Support for the following file encodings: unspecified, UTF-

8, UTF-16le, UTF-16be, UTF-32le, and UTF-32be. File
encodings are detected using the Byte Order Mark.

Table of Contents

https://msdn.microsoft.com/en-us/library/windows/desktop/dd374101(v=vs.85).aspx

5

Building
To build the application use Microsoft Visual Studio 2019.
To build the Microsoft Speech Platform configurations you
need to install the Microsoft Speech Platform - Software
Development Kit (SDK) (Version 11). On 64-bit systems
you should install both the x64 and x86 versions.
In addition, TTSApp depends upon the Boost C++ Libraries
and the LAME MP3 Encoder.
The Boost C++ Libraries and LAME are available in VCPKG.
My fork of VCPKG includes InstallPackagesForWindows.py,
a Python script I use to automate the installation of the packages
I use including the Boost C++ Libraries and the LAME
MP3 Encoder.
To build TTSApp, do the following.

1. Install Microsoft Visual Studio 2019.
2. Install the Microsoft Speech Platform - Software De­

velopment Kit (SDK) (Version 11).
3. Install the Microsoft Speech Platform - Runtime (Ver­

sion 11) and at least one of the Microsoft Speech Plat­
form - Runtime Languages (Version 11).

4. Install Python.
5. Install Git for Windows.
6. Clone My fork of VCPKG.
7. Build VCPKG.

https://visualstudio.microsoft.com/downloads/
https://msdn.microsoft.com/en-us/library/office/hh361572(v=office.14).aspx
https://www.microsoft.com/en-us/download/details.aspx?id=27226
https://www.microsoft.com/en-us/download/details.aspx?id=27226
http://www.boost.org/
http://lame.sourceforge.net/
https://github.com/microsoft/vcpkg
https://github.com/BenKey/vcpkg
https://github.com/BenKey/vcpkg/blob/master/InstallPackagesForWindows.py
http://www.boost.org/
http://lame.sourceforge.net/
http://lame.sourceforge.net/
https://visualstudio.microsoft.com/downloads/
https://www.microsoft.com/en-us/download/details.aspx?id=27226
https://www.microsoft.com/en-us/download/details.aspx?id=27226
https://www.microsoft.com/en-us/download/details.aspx?id=27225
https://www.microsoft.com/en-us/download/details.aspx?id=27225
https://www.microsoft.com/en-us/download/details.aspx?id=27224
https://www.microsoft.com/en-us/download/details.aspx?id=27224
https://www.python.org/
https://gitforwindows.org/
https://github.com/BenKey/vcpkg

6

8. Run the ‘vcpkg integrate install’ command.
9. Run InstallPackagesForWindows.py to install the Boost

C++ Libraries and the LAME MP3 Encoder.

Table of Contents

http://www.boost.org/
http://www.boost.org/
http://lame.sourceforge.net/

7

Motivation
I have low vision. However, my vision is not yet so poor that
I need a fully featured screen reader such as JAWS, NVDA,
or Narrator. I primarily need a text to speech application to
read articles on the Internet. I need an application that allows
me to select the text on a web site, copy it to the clipboard,
and have it be spoken with the press of a keystroke. Thus far
I have not been able to find an affordable application that has
the features I need without adding bloat that I do not need. I
eventually decided to write such an application myself.
Table of Contents

http://www.freedomscientific.com/Products/Blindness/JAWS
http://www.nvaccess.org/
http://windows.microsoft.com/en-us/windows-10/getstarted-hear-text-read-aloud

8

Command Line Options
{TTSApp} usage:

{TTSApp} [options...]:
 -h [--help] Display this information.
 -? Display this information.
 -v [--version] Display version information.
 -i [--input] arg Text file to read and convert
to an MP3 or WAV file.
 -c [--csv] arg CSV file containing information
on strings to read and
 convert to MP3 or WAV files.
Each line of the CSV file
 is assumed to consist of two
columns of data. The first
 column is assumed to contain
the file name of the WAV
 or MP3 file in which to save
the spoken text. The
 second column is assumed to contain
the text that is to
 be spoken.
 -o [--output] arg When used with the input option,
this option specifies
 the MP3 or WAV file to output
the spoken text to. If

9

 the output file is not specified,
this parameter
 defaults to the input file with
the extension renamed
 to .wav.
 -r [--read] arg Text file to read. Unlike the
input option, the read
 option causes the text to be
spoken aloud.
 -V [--voice] arg Voice name to use for speech.
 -w [--wait] When used with the -i and -o
options, specifies that
 TTSApp will wait until after
the MP3 or WAV file is
 written before continuing.
 --rate arg Voice rate. The valid range is
-10 to 10.
 --volume arg Voice volume. The valid range
is 0 to 100.

Table of Contents

10

Usage
TTSApp is a MFC dialog box application. It contains a menu
bar, a large Rich Edit window, a Prosody group box, a Speech
group box, and a File group box.
The Prosody group box contains the Voice combo box and the
Rate and Volume slider bars. The Voice combo box makes it
possible to set the active voice. The Rate slider bar allows you
to set the speech rate and the Volume slider bar allow you to
set the speech volume.
The Speech group box contains the Speak button, the Pause
button, the Stop button, and the Process XML check box. The
Pause button and Stop button are initially disabled. They are
enabled only while the application is speaking. The Speak but­
ton causes the application to begin speaking the text contained
in the Rich Edit window using the selected prosody settings.
Once the application begins speaking, the Pause button and
Stop button are enabled. If you wish to pause or stop speech,
you may do so by pressing these buttons. The Process XML
check box controls whether or not SSML or SAPI XML tags
will be processed.
The File group box contains the Open File button and the Save
to sound file button. The Open File button causes an Open
dialog box to be displayed to prompt a user for a .txt, .ssml,
or a .xml file to open. Once the file is selected, the file will
be opened and its contents will be displayed in the Rich Edit

http://www.w3.org/TR/speech-synthesis/
https://msdn.microsoft.com/en-us/library/ms717077(v=vs.85).aspx

11

window. The Save to sound file button causes the spoken text
to be saved to an MP3 file or a WAV file instead of being spoken
aloud. If the user first opened a file using the Open File button,
the sound file name will be derived from the name of the opened
file. Otherwise the user will be prompted to choose a file name
using a Save dialog box.
The menu bar contains the following menus: File, Format, Edit,
and Help.
The File menu contains the Open, Save to sound file, and Exit
menu items. The Open menu item serves the same purpose
as the Open File button. It is assigned to the accelerator key
Ctrl+O. The Save to sound file menu item serves the same
purpose as the Save to sound file button. It is assigned to
the accelerator key Ctrl+S. The Exit menu item closes the
application. It is assigned to the accelerator key Alt+F4.
The Format menu contains the Font, Font (Fixed Width), De­
crease Font Size, and Increase Font Size menu items. The Font
menu item causes a Font dialog box to be displayed, making
it possible for the font used in the Rich Edit window to be
customized. The Font (Fixed Width) also causes a Font dialog
box to be display; however, it causes the Font dialog box to
display only fixed width fonts. The Decrease Font Size menu
item decrements the font size by one point. It is assigned to
the accelerator key Ctrl+-. The Increase Font Size menu item
increments the font size by one point. It is assigned to the
accelerator key Ctrl++.
The Edit menu contains the following menu items: Cut, Copy,
Paste, Delete, Clear, and Select All. The Cut menu item cuts

12

selected text in the Rich Edit window to the clipboard. It is
assigned to the accelerator key Ctrl+X. The Copy menu item
copies selected text in the Rich Edit window to the clipboard.
It is assigned to the accelerator key Ctrl+C. The Paste menu
item pastes text from the clipboard to the Rich Edit window.
It is assigned to the accelerator key Ctrl+V. The Delete menu
item either deletes selected text from the Rich Edit window or
deletes the character after the caret from the Rich Edit window.
It is assigned to the accelerator key Del. The Clear menu item
clears all text from the Rich Edit window. It is assigned to the
accelerator key Ctrl+Del. The Select All menu item selects all
text in the Rich Edit window. It is assigned to the accelerator
key Ctrl+A.
The Help menu contains the About TTSApp and Usage menu
items. The About TTSApp menu item causes the about box to
be displayed. It is assigned to the accelerator key Alt+F1. The
Usage menu item causes a dialog box displaying the command
line help to be displayed.
The Command Line Options section above gives a complete
description of available command line options.
The command line options that are used for reading text files
require further explanation.
The -i or –input options are used to allow the Save to sound file
functionality to be controlled via the command line. It could
be used in conjunction with the -o or –output to specify the file
name of the MP3 or WAV file that is to be used or it could be
used without the -o or –output command line options. When it

13

is used without the -o or –output command line options, a WAV
file is created and the WAV file name is automatically derived
from the text file name.
The -r or –read options are used to cause the text file to be
spoken aloud instead of having the spoken text saved to an MP3
or WAV file.
There are multiple use case scenarios for TTSApp. The simplest
is to type or paste text in the Rich Edit window, set the desired
voice prosody options, and press the Speak button. The Pause
and Stop buttons, which are initially disabled, are enabled while
TTSApp is speaking. If you wish to Pause or Stop speech, you
may do so using these two buttons.
TTSApp also functions as a clipboard reader. Simply copy
text you wish to be spoken to the clipboard and press Con­
trol+Shift+Windows+C. The clipboard text will be placed in
the Rich Edit window and spoken. I often use this functionality
to read web pages. This was a primary motivation for writing
this application.
TTSApp can be build with four variations, 32-bit SAPI support,
32-bit Microsoft Speech Platform support, 64-bit SAPI support,
and 64-bit Microsoft Speech Platform support. The SAPI sup­
port variations are named TTSApp-SAPI.exe. The Microsoft
Speech Platform support variations are named TTSApp-Mi­
crosoftSpeechPlatform.exe.
TTSApp functions as a single instance application. Only one
instance of each variation can run at a time. If a second instance

14

is started, any command line options are forwarded to the first
instance and it is brought into the foreground.
The -w command line option is used when forwarding commands
to another instance. Instead of simply shutting down when
sending the requests to the first instance, it waits. This is
specifically used in conjunction with the Save to sound file
functionality to make scripts that save multiple text files to
MP3 or WAV files one after another possible.
Table of Contents

15

Credits
Support for generating MP3 files was accomplished by using
three libraries by trodevel and the LAME MP3 Encoder.
Specifically, the following three libraries by trodevel are used.

• convimp3: Convenience MP3 library. Enables easy PCM
to MP3 conversion and vice versa.

• lameplus: Very thin C++ wrapper for LAME library.
• wave: WAV file appender.

These libraries are released under the GNU General Public
License Version 3.
I discovered these libraries thanks to the Stack Overflow article
Is there any LAME c++ wrapper/simplifier.
Table of Contents

https://github.com/trodevel
http://lame.sourceforge.net/
https://github.com/trodevel/convimp3
https://github.com/trodevel/lameplus
https://github.com/trodevel/wave
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
http://stackoverflow.com/questions/2495420/is-there-any-lame-c-wraper-simplifier-working-on-linux-mac-and-win-from-pure

16

License
This software is licensed under The BSD 2-Clause License.
© 2016 - 2023 Benjamin Key - All Rights Reserved.
Table of Contents

https://opensource.org/licenses/BSD-2-Clause

	Introduction
	Features
	Building
	Motivation
	Command Line Options
	Usage
	Credits
	License

